MICROCREDIT WAS EFFECTIVE IN REDUCING POVERTY AND EMPOWERING WOMEN AT SUBNATIONAL LEVEL IN BOLIVIA: EVIDENCE FROM A QUASI-EXPERIMENTAL BAYESIAN SPATIAL MODEL

Rolando Gonzales Martínez and Patricia Aranda Blanco*

ABSTRACT

Gonzales et al. (2017) developed a quasi-experimental Bayesian spatial model to assess the social impact of microcredit at municipal level in Bolivia and found that microfinance had a positive impact on poverty reduction and empowerment of women in this country. Furthermore, the paper discusses the findings within the context of the guidelines of Bolivia’s Financial Services Law and Patriotic Agenda 2025.

Classification JEL: C11, C31, G21.
Keywords: Bayesian Methods, Microcredit, Spatial Statistics, Matching.

* Researchers of the Bayesian Institute for Research on Development. The content of this paper is the sole responsibility of the authors and does not represent the opinion of the Ministry of Economy and Public Finance. Any comments can be emailed to rgonzales@bayesgroup.org or paranda2008@hotmail.com.
I. INTRODUCTION

The microfinance sector provides low-income customers with no access to traditional banking services with small-scale financial services (Karlan and Goldberg, 2007). The impact of microfinance is a controversial topic: the advocates of this model —among whom Nobel Prize winner Muhammad Yunus or World Bank President Jim Yong Kim— assert that microfinance reduces poverty through the generation of employment and more income, which in turn improves the state of health and education of the population. The critics of microfinance, on the other hand, do not believe that microfinance has an impact on poverty reduction and rather suggest that it is an obstacle for regional development since it leads to crowding-out of the productive and formal activities; see for example Bateman (2010).

Assessments of the impact of microfinance tend to be qualitative and based on anecdotal evidence —see Weiss and Montgomery (2005)— or to focus on individual cases or households, as in Banerjee (2015). In order to overcome both constraints, Gonzales et.al. (2017) developed a quasi-experimental impact assessment spatial algorithm, which they use to solve the problem of making an appropriate estimation of the impact of microcredit at the regional level. This quasi-experimental impact assessment is justified in the sense that it is highly relevant to understand whether microcredit has had a favorable or unfavorable impact at the municipal level in Bolivia, with the aim of properly channeling the regional policies of financial inclusion of this country. This article describes the algorithm of Gonzales et.al. op.cit. and discusses the results within the framework of the guidelines of new Financial Services Law N°393 and Bolivian economic and social development plan (Patriotic Agenda 2025).

Section 2 contains a brief literature review about the regional impact of microfinance. Section 3 describes the quasi-experimental impact assessment algorithm. Section 4 presents application for the Bolivian case. Section 5 discusses the results. Annex 1 shows a falsification test to make an evaluation of the advantages and limitations of the BS-PSM algorithm. Annex 2 makes an analysis of robustness of the results in case of changes in the matching techniques and when excluding spatial effects. The MatLAB code used in the study is available on request.

II. REGIONAL IMPACT OF MICROFINANCE

Microcredit has a regional impact when it affects both the customers accessing this financial service and other economic agents in the same geographic region or other nearby regions, as a result of the economic interaction between the borrowers and the rest of the population without access to credits. These regional effects are measured with spatial models like the ones described in Anselin (1988), Arbia (2010), Anselin and Florax (2011), or Griffith and Paelinck (2011). These models seek to capture the effects of financing services in a local economy and in neighboring regions as a result of the commercial and market relationships among regions and the mobility of the production factors (Capello, 2009).

The favorable impact of microfinance on poverty at the regional level may be presented in the form of the economic boost resulting from the borrowers’ investment in the region or in nearby regions (Glennster and Takavarasha, 2013). On the other hand, negative effects may occur if the microfinancial entities grant loans to short-lived informal and unproductive companies (Bateman, 2013), which may give rise to a crowding-out effect in the region if benefiting
informal employment and self-employment deters the operation of formal small and medium-sized companies with prospects for technological improvement, widely recognized as a source of formal employment and growth in developing countries — see Bateman and Chang (2009), Bateman (2010) or Bateman (2013).

With regard to the impact of microfinance on the empowerment of women, Glennerster and Tavarasha (2013) provide an excellent example of this phenomenon: there may be positive effects when, within a region or community, women start with an economic activity with the credits received and employ their neighbors, generating employment and ensuring distribution of the income obtained. Thus, the benefit of the loan even reaches women who did not have access to the credit because of the mere fact that they live in the region where microcredit is available. Negative effects occur if women with existing businesses suffer from growing competition when new borrowers set up business in the same community and offer similar products.

Some empirical studies on the impact of microfinance are, inter alia, Mosley (2003), Mosley and Rock (2004), Khalily (2004), Wright and Copestake (2004), Chowdhury and Bhuiya (2004), Johnson (2004), Velasco and Marconi (2004), or McIntosh (2008). In terms of positive effects, these studies found that microfinance stabilizes income at the regional level (Mosley, 2003), generates a demand that boosts the economy through the labor market (Mosley and Roca, 2004) and helps the micro enterprises maintain a growing level of production and investment, even when there is a slowdown (Velasco and Marconi, 2004). In terms of negative effects, Velasco and Marconi (2004) found that the credits are sometimes used for consumption rather than production, giving rise to a problem in the debtor’s payment discipline.

In the case of Bolivia, some of the studies analyzing the impact of microfinance are MkNelly and Dunford (1999), Navajas, Schreiner, Meyer, Gonzales-Vega and Rodriguez-Meza (2000), Mosley (2001), Brett (2006), Velasco and Marconi (2004), and Gonzales (2010). MkNelly and Dunford (1999) assess the social impact of microcredit by comparing nutritional data two years after the communities were offered loans. The authors did not find evidence of an improved food security among the households or an improved nutritional status of the credit customers’ children, compared to the control group. Navajas et al. (2000) compared the level of poverty among the borrowers to that of other households in La Paz and found that microfinance does not normally target the poorest people but rather people near the poverty line. Using data on Bolivian microborrowers and a control sample with a before-after methodology, Mosley (2001) found that growth of the income and assets of the borrowers is always greater compared to the control group, but there is no evidence of this effect among people living in extreme poverty. More recently, in his suggestive ethnographic article entitled “We Sacrifice and Eat Less: The Structural Complexities of Microfinance Participation”, Brett (2006) found that, after accessing microcredit to set up a small business, many women in El Alto are unable to generate sufficient income to pay their debt and therefore have to use money for household expenses, which means that they sometimes have less money for food. Finally, Gonzales (2010) analyzed the regional impact of credit in developing economies and found that, on average, the municipalities with access to financial services have better human development indicators.
Albeit that Velasco and Marconi (2004) or Gonzales (2010) previously analyzed the regional impact of microfinance in Bolivia, with the new information from the 2012 National Population and Housing Census, showing that it is possible to make a more complete analysis of the regional impact of having access to microcredit in all Bolivian municipalities. In addition, previous studies did not make a rigorous impact assessment, which is why a quasi-experimental spatial design is a methodological improvement compared to previous studies.

III. BAYESIAN SPATIAL-PROPENSITY SCORE MATCHING (BS-PSM)

This section describes the BS-PSM quasi-experimental algorithm used to assess regional impacts. Where \(t \) is a binary vector of values \(n \times 1 \), which reflect the presence, or absence, of treatment (in this case microfinance) in a region \(i = 1,2,\ldots,n \) (in this case, the \(i = 1,2,\ldots,339 \) municipalities of Bolivia). The spatial dependence among the regions is estimated with a Spatial Error Model (SEM) that captures the influence of spillover effects through an error term \(\varepsilon \),

\[
\begin{aligned}
\begin{cases}
 t = X\beta + \varepsilon \\
 \varepsilon = \rho W\varepsilon + \nu, \quad \nu \sim \mathcal{N}(0, \sigma^2_{\nu}I_n)
\end{cases}
\end{aligned}
\]

where \(\rho \) is the spatial correlation coefficient, \(W \) is a stochastic square matrix of \(n \times n \) regions, and \(X \) is a matrix \(n \times p \) with \(p \) -control covariants for the \(n \) regions,

\[
X = \begin{pmatrix}
 x_{i1} & \cdots & x_{ip} \\
 \vdots & \ddots & \vdots \\
 x_{n1} & \cdots & x_{np}
\end{pmatrix}
\]

which captures the autocorrelated spatial shocks in the error term (Elhorst, 2014). The Bayesian approach for modeling this type of spatial and limited dependent variables treats binary observations 0,1 in \(t \) as indicators of the unobserved latent net utility of a spatial agent in region \(i \). Formally, based on the difference among utilities \(u_{li} - u_{0i}, \ i = 1,\ldots,n \), associated to observed 0,1 choice indicators, the probit model assumes that the difference \(t_i^* = u_{li} - u_{0i} \) follows a Gauss-Laplace distribution, and, since \(t_i^* \) is not observable, \(t_i = 1 \) if \(t_i^* \geq 0 \) and \(t = 0 \) if \(t_i^* < 0 \). This implies that \(\mathbb{P}(t_i = 1) = \mathbb{P}(u_{li} \geq u_{0i}) = \mathbb{P}(t_i^* \geq 0) \). Therefore, a likelihood function for an SEM model is,

\[
\mathcal{L}(t,W | \beta, \rho, \sigma^2_{\nu}) = \frac{1}{2\pi\sigma^2_{\nu}}|I_n - \rho W| \exp \left\{ -\frac{1}{2\sigma^2_{\nu}}\varepsilon^\prime\varepsilon \right\}
\]

with \(\varepsilon = (I_n - \rho W)(t - X\beta) \). Using a diffuse prior for \(\beta, \rho, \sigma^2_{\nu} \), the joint conditional function for these parameters becomes,
\(\mathbb{P}(\beta, \rho, \sigma^2 | t, W) \propto |I_n - \rho W|^{-n(n+1)} \exp \left\{ -\frac{1}{2\sigma^2} e'e \right\} \)

(4)

with a nucleus:

\(\mathbb{P}(\sigma^2 | \beta, \rho) \propto \sigma^{-(n+1)} \exp \left\{ -\frac{1}{2\sigma^2} e'e \right\} \)

(5)

for the conditional posterior function of \(\sigma^2 \), and:

\(\mathbb{P}(\beta | \rho, \sigma^2) \sim \mathcal{N}(\beta, \sigma^2 (X'B'X)^{-1}) \)

(6)

\[\beta = (X'B'X)^{-1}(X'B'Bt) \]

(7)

\[B = (I_n - \rho W) \]

(8)

for the multivariate Gaussian conditional distribution of \(\beta \). The conditional distribution of \(\rho \) given \(\beta \) and \(\sigma^2 \) is:

\(\mathbb{P}(\rho | \beta, \sigma^2) \propto |I_n - \rho W|^{-n(n+1)} \exp \left\{ -\frac{1}{2\sigma^2} e'e \right\} \)

(9)

LeSage (2000) proposed a Monte Carlo Markov Chain (MCMC) estimator to generate samples of this last distribution. Also see LeSage and Pace (2009).

Based on the probabilities calculated with the SEM model, it is possible to use matching estimators to compare a region that received treatment (in this case a municipality with access to microcredit) with members of a comparison group (municipalities without access to microcredit but with similar characteristics as the municipality with access). Be \(\hat{p} := \mathbb{P}(t_i = 1) = f \left(\rho W \varepsilon, X \beta \right) \) the estimated probabilities of the spatial probit model. A traditional matching estimator of close neighbors between treated and untreated regions is:

\[C_{mn}(\hat{p}) = \min_j \| \hat{p}_i - \hat{p}_j \|, \text{ with } j \in n_0 \]

(10)

where \(n_0 \) is the group of untreated regions (i.e. the municipalities without access to financial services). In this type of matching, the score of a treated \(i \)-region is compared to the scores of all untreated \(j \)-regions, with the objective of finding an untreated region with a score similar to that of the treated region. However, this strategy may lead to an erroneous matching if the nearest neighbor is very far from the treated region (Caliendo and Kopeinig, 2008). This problem can be avoided by imposing a level of tolerance on the maximum distance between
scores, i.e. a caliper: be \(\delta \) a measure of proximity between the centroids of the regional polygons, calculated on the basis of matrix of distances \(W \), if \(\delta \) is taken into account during the matching, then:

\[
C_{sc}(\hat{p}, W) = \min_j \hat{p}_i - \delta_j \hat{p}_j, \quad \text{with } j \in n_0
\]

(11)

the score \(\hat{p}_i \) of a treated \(i \)-region will be compared only to the scores of untreated adjacent or nearby regions. This is a type of Spatial Caliper Matching (SCM), in which the tolerance is given by the geographic nearness between the regions. The Spatial Average Treatment Effect (SATE) estimated with this method is:

\[
SATE = \mathcal{G}_u = \mathcal{M}(t, W, X, y, \Theta) = \mathbb{E}_{W, \Theta}\left\{ \left(y_i \mid t_i = 1, X_{1i} = x_1, \ldots, X_{pi} = x_p \right) - \left(y_i \mid t_i = 0, X_{li} = x_1, \ldots, X_{pi} = x_p \right) \right\}
\]

(12)

where \(y \) represents a regional impact variable, \(\mathcal{M}(\cdot) \) is a matching function and \(\left\{ \beta, \rho, \sigma_u^2 \right\} \in \Theta \) is a stacked vector of parameters of the spatial discrete choice model. An estimation of the SATE can be calculated with \(\left\{ \hat{p}^{(1)}, \hat{p}^{(2)}, \ldots, \hat{p}^{(g)} \right\} \) using a \(g \)-sample of \(\mathbb{P}\left(\hat{p}^{(g)} \mid \beta, \sigma_u^2 \right) \) and \(\mathbb{P}\left(\rho^{(g)} \mid \beta, \sigma_u^2 \right) \) of the spatial probit model; therefore:

\[
C_{sc}\left(\hat{p}^{(g)}, W \right) = \min_j \| \hat{p}_i^{(g)} - \delta_j \hat{p}_j^{(g)} \| \]

(13)

and the complete density of the SATE can be obtained with the \(g = 1, \ldots, G \) -runs of the MCMC sampler:

\[
\left\{ \mathcal{M}(t, W, X, y, \Theta^{(g)}) \right\}_{g=1}^{G}
\]

(14)

See, inter alia, Chib and Greenberg (2010), or Alvarez and Levin (2014). Using this density, it is possible to calculate point statistics and credibility intervals: be \(\mathcal{G} \) a SATE, a Bayesian point estimation \(\hat{\mathcal{G}} \) will be the value of \(\mathcal{G} \) that minimizes the expected value of a loss function \(\ell(\hat{\mathcal{G}}, \mathcal{G}) \), taking the expectation of the posterior distribution function of \(\mathcal{G} \), \(\pi(\mathcal{G} \mid D) \):

\[
\min_{\mathcal{G}} \mathbb{E}\left[\ell(\hat{\mathcal{G}}, \mathcal{G}) \right] = \min_{\mathcal{G}} \int \ell(\hat{\mathcal{G}}, \mathcal{G}) \pi(\mathcal{G} \mid D) d\mathcal{G}
\]

(15)
Under quadratic loss,

$$\min_{\hat{\vartheta}} \mathbb{E} \left[\ell(\hat{\vartheta}, \vartheta) \right] = \min_{\vartheta} \left[(\hat{\vartheta} - \vartheta)^2 \pi(\vartheta | D) d\vartheta \right]$$

(16)

See Geweke (2005) or Gill (2007). An $\gamma = 1 - \alpha$ Bayesian credibility interval $C_{\vartheta, \gamma}$ for the SATE will be a subregion of the probability space parameterized by $\vartheta \in \Theta$; see inter alia Shalloway (2014).

Since propensity score matching is a two-stage estimation technique, the standard error of the mean treatment effect has to be adjusted to take into account the uncertainty in the first stage of estimation of the score (Gelman and Hill, 2007). Compared to variance adjustment methods, the use of Bayesian methods ensures that positive standard errors are obtained. Additionally, in case of small data samples, maximum likelihood suffers from low power and produces biased estimators. This problem can be overcome by using a Bayesian estimation with informative priors; see Van de Schoot, Broere, Perryck, Zondervan-Zwijnenburg and Van Loey (2015). In order to evaluate the advantages and limitations of the BS-PSM algorithm, Annex 1 at the end of the study shows a falsification test that evaluates the impact of microcredit on deafness of the inhabitants of a municipality. Annex 2 contains an additional analysis of robustness of the BS-PSM algorithm in case of changes in the matching technique and excluding spatial effects.

IV. REGIONAL EFFECTS OF MICROFINANCE IN BOLIVIA

Bolivia is an interesting case study to make an assessment of the regional effects of microcredit in view of its paradigmatic microfinance history. The first microcredit initiatives in Bolivia were led by Non-Governmental Organizations (NGOs) in the 1980s. In the 1990s, several NGOs became regulated microfinance institutions. The rapid growth and the high earnings of these institutions attracted investors to the market and Bolivia became one of the best environments for microfinance development in the world. Together with Peru, the country was ranked among the top in the Global Microscope prepared by the Inter-American Development Bank (IDB). In order to evaluate the regional impact of this development, the BS-PSM was used in the field of microfinance in Bolivia, comparing the differences between the Bolivian municipalities with and without access to this financial service, thus testing the effects of microcredit—as the main microfinance product—on poverty, female empowerment and informality in Bolivia. The probability of access to financing was estimated on the basis of the spatial distances between municipalities in matrix W, and the control covariates in each municipality, contained in X.

Data and variables. The information of the National Population and Housing Census 2012 was used to calculate demographic variables at the municipal level in Bolivia. The information about microcredit was obtained from the Authority for Supervision of the Financial System and the data to estimate informality were obtained from the Bolivia Household Survey 2012.

The regional access to microfinance was measured based on the number of microcredit operations in Bolivian municipalities. Be N_i the number of microcredit operations with $i = 1, \ldots, n$, divided by the economically active population of every municipality. Binary treatment variable t_i in financial access vector t is equal to:
where $Q \in \mathbb{R}^+$ are percentiles of the number of microcredit operations in every region. Using this quasi-continuous estimation, it is possible to measure the differential impact of the number of microcredit operations on poverty, the empowerment of women and informality. This approach is similar to the different dose response function proposed by Hirano and Imbens (2004).

Matrix X of control covariates 339×9 is made up of 9 variables for each of the 339 Bolivian municipalities:

1. Total population.
2. Potential offer of employment, measured as the percentage of the working-age population older than 15 years of age over the total population (this indicator seeks to capture the percentage of individuals offering or old enough to offer their work in the labor market).
3. Precarious waste disposal, a proxy variable of the standard of living, measured as the percentage of households in a municipality that do not use the garbage collection service (through the garbage truck) and rather dispose of their garbage in public spaces or on the riverbank.
4. Place where the woman gave birth, which is not a health center, as a proxy variable of the standard of living in a municipality.
5. Percentage of the population living in the rural area.
6. Percentage of the population with access to electricity.
7. Percentage of children in the population.
8. Overall rate of participation of women, as an indicator of employment that shows the size of the female labor force.
9. Schools per capita, measured as the number of schools divided by the number of inhabitants of the municipality.

Variables (1) to (8) were calculated on the basis of information of the National Population and Housing Census 2012; variable (9) was obtained from administrative records. These variables were selected from among a broader set of variables (A General Unrestricted Model or GUM) which was reduced to the final specification, using a general-to-specific methodology (Campos et al., 2005). The original GUM—i.e. the more general statistical model initially postulated, given the available data, prior empirical and theoretical evidence, and any available additional information (Hendry and Nielsen, 2007)—originally included a large number of variables prepared with census information, e.g. the average number of schooling of the population, migration, the number of households that have a vehicle or the number of self-employed persons in the municipality, among other variables.

In terms of impact variables, poverty was measured on the basis of the method of Unsatisfied Basic Needs (UBN) as a multidimensional measure of poverty that takes into account variables such as the quality of the house, the access to potable water, the access to basic sanitation,
education, electricity and the consumption capacity of the households; see ECLAC (2009). The empowerment of women was calculated on the basis of the percentage of women household heads in a municipality, excluding the ones who are household heads because they are divorced, separated or widowed. This variable measures empowerment based on decision-making at the household level, since the woman is the household head even when she has a husband or partner; Yogerdrarajah (2013) used a similar measure of empowerment. The measurement of informality was based on the proxy variable of the household not being registered in the pension system in the Bolivia Household Survey 2012. This approximation of informality was also used by the World Bank (2009) to analyze the reasons and the impact of informality in Bolivia.

Graph 1: Delaunay triangulation and W approximation matrix

Matrix of municipal contiguity. Based on Bolivia’s Geographic Information System (GIS) for 2012, a W approximation matrix of 339×339 was built, calculating the Euclidian distance
between the centroids of the 339 Bolivian municipalities, satisfying the Delaunay triangulation condition (Graph 1).

Differences observed at municipal level. Graph 2 shows differences in terms of poverty and empowerment in the 339 municipalities of Bolivia, comparing the municipalities with access to financial services to the ones without access to financial services (each point in the graph is a municipality). In the case of informality, there are household survey data for only 173 municipalities.

On average, the UBN indicator shows that 79.5% of the population lived in poverty conditions based in UBN measurements in the municipalities without financial access, while the percentage of UBN-based poverty in the municipalities with access to financial services was approximately 18 percentage points (pp) lower, at an average 61% in 2012. In terms of the empowerment of women, the percentage of women recognized as household heads in the municipalities with access to financial services averaged 25.2%, i.e. 2.1 pp higher than the average in municipalities with no access to financial services. With regard to informality, in 2012 the municipalities with access had a higher percentage of informality (14.5%), of 5.2 pp more than the municipalities without financial access (9.32%).

Graph 2: Differences observed at municipal level
Nonetheless, these differences in terms of poverty, empowerment of women and informality between the municipalities with access and without access to financial services cannot be attributed entirely to microcredit since there are other idiosyncratic (demographic, social and economic) factors in each municipality which may explain the differences in the indicators on poverty, empowerment of women and informality. The objective of quasi-experimental methods like BS-PSM is precisely to try to isolate the effect of interest from other idiosyncratic effects, through the comparison of municipalities with financial access to municipalities without financial access, which are similar in demographic, social and economic terms.

Spatial effects of microfinance in Bolivia. Graphs 3, 4, 5 and tables 1 and 2 show the results of estimating the impact of microcredit at municipal level in Bolivia, calculated with BS-PSM. Graphs 3, 4 and 5 show the probability distributions of the differences of the variables analyzed for each percentile of treatment, together with the Monte Carlo Markov Chain (MCMC) used to approximate these distributions. During the estimation of the BS-PSM model, a prior of $\pi(\rho) \sim U(0,1)$ was used for spatial correlation coefficient ρ, reflecting the fact that the presence of an entity providing financial services in a municipality increases the possibilities of the population in nearby municipalities accessing financial services, i.e. a positive spatial correlation in financial access. For the impact in each percentile Q of microcredit operations, chains of 1100 iterations were simulated and a burn-in of 100 iterations was chosen to discard the non-stationary part of the chain (i.e., 110 thousand iterations of the MCMC sample were run and 10 thousand were discarded). An autocorrelation was found in the simulated chains. In order to eliminate this correlation, the method of thinning the iterations was applied, but since the results obtained with the chains with and without thinning were not extremely different, the
estimators of the SATE are based on the unthinned chains; see Link and Eaton (2012) for a discussion on the use of thinning. Statistics and post-estimation tests were calculated to evaluate the spatial models, using statistic pseudo-R^2 proposed by Efron (1978) and the Bayesian version of the balance test proposed by Gonzales (2015).

The most conclusive evidence of the regional impacts was obtained for poverty and the empowerment of women. The evidence concerning informality is weak and inconclusive:

1) **Poverty.** Strong evidence was found of the impact of microcredit on the reduction of poverty at the municipal level. The credibility interval at 95% does not include zero at any of the Q centiles of microfinance operations (Graph 3, left) and the MCMC chains are strongly stationary for each centile (Graph 3, right). Table 1 shows that, on average the municipalities with access to micro credit tend to have around 11 pp less population living in UBN-based poverty, compared to the municipalities without access to microfinance. This difference of 11 pp in poverty is lower than the difference of 18 pp in case of a simple comparison of the municipalities with and without access to financial services, which shows that after controlling for the socioeconomic, demographic and spatial characteristics of every municipality, the impact of microcredit on poverty reduction is small, but favorable all the same.

2) **Empowerment of women.** With a credibility interval of 95%, the impact of microcredit on the empowerment of women was estimated to be above zero for the different intensities of microcredit provision captured in each percentile Q, showing that the percentage of women who are household heads is higher in the municipalities with access to microcredit, even after controlling for the spatial distance and the population characteristics of the municipalities. The MCMC chains are once again stationary in each percentile Q (Graph 4, right) and there is a good convergence thereof. Remarkably, the number of households with female household heads in a municipality tends to increase as the regional microcredit operations increase, until reaching a peak in percentile 60 (3.27 pp). See Graph 4 (left).

3) **Informality.** The evidence about informality suggests that the informal activities in the municipalities with access to microfinance are on average higher in the municipalities with local and medium levels of microfinance operations (below percentile 60), because when the intensity of microfinance operations increases above percentile 60, the SATE credibility intervals start to include zero (Graph 5, left). Nonetheless, this result has to be considered cautiously, because it is based on information of the household survey, which does not cover all Bolivian municipalities.
Table 1: Regional impact of microfinance in Bolivia*
(In percentage points)

<table>
<thead>
<tr>
<th></th>
<th>Percentile 25</th>
<th>Percentile 50</th>
<th>Percentile 75</th>
</tr>
</thead>
<tbody>
<tr>
<td>Poverty</td>
<td>-11.09</td>
<td>-12.35</td>
<td>-11.52</td>
</tr>
<tr>
<td></td>
<td>(-12.46; -9.81)</td>
<td>(-14.25; -10.82)</td>
<td>(-16.31; -7.86)</td>
</tr>
<tr>
<td>Empowerment of</td>
<td>1.61</td>
<td>2.68</td>
<td>2.11</td>
</tr>
<tr>
<td>women</td>
<td>(1.27; 1.99)</td>
<td>(2.17; 3.19)</td>
<td>(1.28; 3.03)</td>
</tr>
<tr>
<td>Informality</td>
<td>7.55</td>
<td>6.87</td>
<td>6.04</td>
</tr>
<tr>
<td></td>
<td>(6.54; 8.77)</td>
<td>(4.13; 7.55)</td>
<td>(0.29; 9.74)</td>
</tr>
</tbody>
</table>

(*) Point estimation.
Between brackets below every estimator: confidence intervals at 95%.

Graph 3: Spatial average treatment effect - poverty
With regard to the post-estimation validation (Table 2), the value of Efron’s statistic pseudo-R², near 50%, shows an acceptable adjustment of the spatial probit model, the spatial correlation is greater in the models based on the household survey, and the balance test points to non-rejection of the null hypothesis of balancing of the control variables; nonetheless, the evidence on compliance of the balancing requirement is weaker for informality, which questions about the calculation of the score for this variable. The results of the Geweke convergence statistic (Geweke, 1992) show a good convergence of the MCMC in the case of variables poverty and the empowerment of women, but not in the case of informality, showing that it is necessary to be careful when interpreting the results in terms of the impact of microcredit on informality at the municipal level in Bolivia.
Table 2: Post-estimation statistics

<table>
<thead>
<tr>
<th></th>
<th>Poverty</th>
<th>Empowerment of women</th>
<th>Informality</th>
</tr>
</thead>
<tbody>
<tr>
<td>Efron’s pseudo-R²</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R²</td>
<td>52.26</td>
<td>52.02</td>
<td>45.56</td>
</tr>
<tr>
<td>Spatial correlation*</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ρ</td>
<td>0.155</td>
<td>0.159</td>
<td>0.462</td>
</tr>
<tr>
<td></td>
<td>(0.012; 0.321)</td>
<td>(0.012; 0.391)</td>
<td>(0.053; 0.88)</td>
</tr>
<tr>
<td>Estimation of the Spatial Probit model†</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>x₀</td>
<td>-33.954</td>
<td>-34.429</td>
<td>-31.815</td>
</tr>
<tr>
<td>x₁</td>
<td>0.6644</td>
<td>0.6475</td>
<td>0.3816</td>
</tr>
<tr>
<td>x₂</td>
<td>0.3277</td>
<td>0.3307</td>
<td>0.3090</td>
</tr>
<tr>
<td>x₃</td>
<td>-0.0200</td>
<td>-0.0190</td>
<td>-0.0310</td>
</tr>
<tr>
<td>x₄</td>
<td>-0.027</td>
<td>-0.0270</td>
<td>-0.0240</td>
</tr>
<tr>
<td>x₅</td>
<td>0.0002</td>
<td>0.0001</td>
<td>0.0044</td>
</tr>
<tr>
<td>x₆</td>
<td>0.2213</td>
<td>0.2479</td>
<td>-1.0353</td>
</tr>
<tr>
<td>x₇</td>
<td>0.0095</td>
<td>0.0099</td>
<td>0.0024</td>
</tr>
<tr>
<td>x₈</td>
<td>0.2303</td>
<td>0.2342</td>
<td>0.2501</td>
</tr>
<tr>
<td>x₉</td>
<td>0.0279</td>
<td>0.0288</td>
<td>0.0367</td>
</tr>
<tr>
<td>Balancing Tests‡</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>x₁</td>
<td>0.4691</td>
<td>0.4719</td>
<td>0.2424</td>
</tr>
<tr>
<td>x₂</td>
<td>0.1167</td>
<td>0.1148</td>
<td>0.0300</td>
</tr>
<tr>
<td>x₃</td>
<td>0.3434</td>
<td>0.3607</td>
<td>0.2001</td>
</tr>
<tr>
<td>x₄</td>
<td>0.0876</td>
<td>0.1010</td>
<td>0.0531</td>
</tr>
<tr>
<td>x₅</td>
<td>0.3685</td>
<td>0.3861</td>
<td>0.1183</td>
</tr>
<tr>
<td>x₆</td>
<td>0.0438</td>
<td>0.0473</td>
<td>0.0189</td>
</tr>
<tr>
<td>x₇</td>
<td>0.0487</td>
<td>0.0550</td>
<td>0.2074</td>
</tr>
<tr>
<td>x₈</td>
<td>0.1066</td>
<td>0.1027</td>
<td>0.0278</td>
</tr>
<tr>
<td>x₉</td>
<td>0.0671</td>
<td>0.0759</td>
<td>0.0261</td>
</tr>
<tr>
<td>Geweke’s Convergence Diagnostic*</td>
<td>0.4263</td>
<td>0.9512</td>
<td>0.0111</td>
</tr>
</tbody>
</table>

(*) Between brackets below each point estimator: credibility interval at 95%
(†) Bayes point estimation. Term x₀ is the constant in the spatial model.
(‡) Bayesian P-values for the null hypothesis of balancing in the variable.
(*) P-values for the null hypothesis of equality of the mean in the chain fractions. The test was performed in percentile 50 of the SATE chain and in fractions 10% and 50% at the beginning and end of the chain, respectively.
V. CONCLUSION

Gonzales et al. (2017) developed a quasi-experimental spatial algorithm for assessing the impact at the regional level. The algorithm was used to make an assessment of the impact of microcredit on poverty, informality and the empowerment of women in Bolivian municipalities.

Evidence was found in the sense that the municipalities with access to microcredit have a lower rate of poverty based on Unsatisfied Basic Needs (UBN) and have more households in which a woman is the household head, as the proxy variable of the empowerment of women in terms of decision-making. The results with regard to poverty reduction coincide with the ones found at the level of individuals and households by Wright (2000), Morduch and Haley (2002), or Khandker (2005), and the favorable effects on the empowerment of women are similar to those found by e.g. Rahaman (1986), Pitt and Khandker (1998), Pitt et al. (2006), or Swain and Wallentin (2009). Moreover, the results suggest that a possible cost of reducing poverty and fomenting the empowerment of women could have been an increase of informality, at least when microfinancing is incipient in a region. Considering that at present, the main criterion to access microcredit in Bolivia is the generation of income and the payment ability —beyond the evaluation of whether the applicant’s economic activity has all legal documents for operation— the effect of microfinance may be a factor in addition to the structural factors that generate informality in the country, i.e. the regulatory burden, weak institutions and the lack of perceived benefits for being formal (World Bank 2009). However, the evidence of the relationship between microcredit and informality analyzed in this study is weak and cannot be considered conclusive because of the following reasons: (i) the information collected through the household surveys does not cover all municipalities of Bolivia, and (ii) no adequate balancing of the variables and no adequate convergence of the MCMC were observed during the BS-PSM estimation for the variable of informality.

In terms of policy recommendations, the results of the study are relevant to formulate evidence-based policies for Patriotic Agenda 2025 and Financial Services Law No. 393 of Bolivia. Pilar 5 of Bolivia’s National Development Plan seeks to ensure comprehensive development of the financial system in support of poverty eradication by granting loans and other services. Law No. 393, on the other hand, is much more than a prudential regulation and seeks to improve the access to financial services for the benefit of the low-income population. Within the framework of this law, financial services must have a social function in conditions of equal treatment, non-discrimination on grounds of age, gender, race, religion or cultural identity.

The favorable impact of microcredit on poverty and the empowerment of women found in this study suggests that enhancing financial access and improving the granting of loans at the municipal level, primarily in municipalities with a limited or no presence of financing entities, can be helpful to accomplish the objectives of Law No. 393 and the Patriotic Agenda.

In order to be effective, these policies to improve access and quality of the financial services at the municipal level, must be underpinned by a local policy at the subnational level based on the identification of transmission mechanisms through which microfinance operates, particularly: (i) if the transmission channels are through changes in the roles assigned within the household, the incentivized policies should aim to give more power to women and offer financial education so that women could adequately administer their financial resources, (ii) if the channels are the
companies of auxiliary industries, then it is necessary to strengthen the human resources and the institutions providing financial services in remote areas, and finally (iii) if the transmission is through local multiplier effects of an increased consumption, it may be that no other additional policies are required, since merely broadening the access to microcredit would reduce poverty and empower women in the region.
REFERENCES

ANNEX 1

FALSIFICATION TEST OF THE BS-PSM ALGORITHM

A falsification test has been performed concerning BS-PSM algorithm with the aim of evaluating whether it falsely detects regional impacts. The falsification hypothesis is that there is a causal relationship between microcredit and the percentage of deaf people in a municipality, whereby this assertion is most probably untrue and should therefore be rejected by the algorithm.

Graph A.1 shows the differences observed with regard to the individuals suffering from deafness in the municipalities with and without access to microfinance, without controlling for idiosyncratic variables; the census data show that there is a greater percentage of deaf people in municipalities without access to microfinance (75%) compared to the municipalities with access to microfinance (65%).

Graph A.2 shows the results of the Bayesian estimation, based on algorithm BS-PSM. With a credibility level of 95%, estimator BS-PSM is near zero, which does not provide any evidence in favor of the initially stated falsification hypothesis. The lack of confirmation of the improbable link between microfinance and people suffering from deafness, supports the validity of BS-PSM algorithm and reinforces the conclusions about the associations of interest in the study.

Graph A.1: Differences observed between people with deafness and municipalities with and without access to microfinance
Graph A.2: Average differences of municipalities with and without access to microfinance, estimated using BS-PSM
ANNEX 2

ANALYSIS OF ROBUSTNESS OF THE RESULTS IN RESPONSE TO CHANGES IN THE MATCHING TECHNIQUE AND THE EXCLUSION OF SPATIAL EFFECTS

Robustness of the results in response to the exclusion of spatial information was evaluated by changing the hyperparameter of the spatial correlation coefficient of the probit function to $\rho \sim \mathcal{U}(-1;0,1)$ so it would not include any spatial correlation (in the study, the assumption was $\rho \sim \mathcal{U}(0,1)$, i.e. an a priori positive spatial correlation). On the other hand, the robustness of the results in response to changes in the matching technique was evaluated by using nearest neighbor matching instead of the spatial caliper matching technique.

As a result of the new prior ρ, the posterior estimation of ρ includes zero with a probability of 95% (graphs A.4b, A.6b and A.8b), in other words, there is no spatial correlation in the probit model used to estimate the matching scores. The SATE estimations based on this assumption of no spatial correlation are not affected by this hypothesis, since the results with and without spatial information are almost the same, as can be observed in graphs A.3d, A.4d, A.5d, A.6d, A.7d and A.8.d. On the other hand, the estimation based on non-spatial nearest neighbor matching produces a multimodal estimation of the regional ATE. This last result suggests that the SATE estimation is robust to the inclusion/exclusion of spatial effects during the matching, but not to the estimation of the matching probabilities in the discrete choice model. See graph A.3d compared to A.3f, A.4d against A.4f, A5d against A.5f, A.6d against A.6f, A.7d against A.7f and A.8d against A.8f.
Graph A.3: SATE estimation for the empowerment of women with spatial information

(a) MCMC estimation of $\hat{\rho}$ with prior $\rho \sim \mathcal{U}(0,1)$.
(b) Histogram of $\hat{\rho}$.
(c) MCMC estimation of SATE with spatial matching.
(d) SATE histogram with spatial matching.
(e) MCMC estimation of SATE without spatial matching.
(f) SATE histogram without spatial matching.

Graph A.4: SATE estimation for the empowerment of women without spatial information

(a) MCMC estimation of $\hat{\rho}$ with prior $\rho \sim \mathcal{U}(-1;0,1)$.
(b) Histogram of $\hat{\rho}$.
(c) MCMC estimation of SATE with spatial matching.
(d) SATE histogram with spatial matching.
(e) MCMC estimation of SATE without spatial matching.
(f) SATE histogram without spatial matching.
Graph A.5: SATE estimation for poverty with spatial information

(a) MCMC estimation of $\hat{\rho}$ with prior $\rho \sim \mathcal{U}(0,1)$.
(b) Histogram of $\hat{\rho}$.
(c) MCMC estimation of SATE with spatial matching.
(d) SATE histogram with spatial matching.
(e) MCMC estimation of SATE without spatial matching.
(f) SATE histogram without spatial matching.

Graph A.6: SATE estimation for poverty without spatial information

(a) MCMC estimation of $\hat{\rho}$ with prior $\rho \sim \mathcal{U}(-1;0,1)$.
(b) Histogram of $\hat{\rho}$.
(c) MCMC estimation of SATE with spatial matching.
(d) SATE histogram with spatial matching.
(e) MCMC estimation of SATE without spatial matching.
(f) SATE histogram without spatial matching.
Graph A.7: SATE estimation for informality with spatial information

(a) MCMC estimation of $\hat{\rho}$ with prior $\rho \sim \mathcal{U}(0,1)$.
(b) Histogram of $\hat{\rho}$.
(c) MCMC estimation of SATE with spatial matching.
(d) SATE histogram with spatial matching.
(e) MCMC estimation of SATE without spatial matching.
(f) SATE histogram without spatial matching.

Graph A.8: SATE estimation for informality without spatial information

(a) MCMC estimation of $\hat{\rho}$ with prior $\rho \sim \mathcal{U}(-1;0,1)$.
(b) Histogram of $\hat{\rho}$.
(c) MCMC estimation of SATE with spatial matching.
(d) SATE histogram with spatial matching.
(e) MCMC estimation of SATE without spatial matching.
(f) SATE histogram without spatial matching.